180 lines
6.7 KiB
TypeScript
180 lines
6.7 KiB
TypeScript
|
|
import { PrismaClient } from '@prisma/client';
|
|
import { GoogleGenAI, Type, Part } from "@google/genai";
|
|
import fs from 'fs';
|
|
import path from 'path';
|
|
import sharp from 'sharp';
|
|
|
|
interface ReconstructionOptions {
|
|
projectId: string;
|
|
prisma: PrismaClient;
|
|
ai: GoogleGenAI;
|
|
storageRoot: string;
|
|
}
|
|
|
|
export async function reconstructProjectMetadata({ projectId, prisma, ai, storageRoot }: ReconstructionOptions) {
|
|
console.log(`[AI-Reconstruction] Starting analysis for project: ${projectId}`);
|
|
|
|
const project = await prisma.project.findUnique({
|
|
where: { id: projectId },
|
|
include: { assets: true, seoData: true }
|
|
});
|
|
|
|
if (!project) throw new Error("Project not found");
|
|
|
|
// FIND MASTER ASSET
|
|
const masterAsset = project.assets.find(a => a.type === 'master' || a.type === 'MASTER' || a.type === 'upscaled');
|
|
|
|
if (!masterAsset) {
|
|
console.warn(`[AI-Reconstruction] No master/upscaled asset found for ${projectId}.`);
|
|
throw new Error("No master image found to analyze.");
|
|
}
|
|
|
|
// RESOLVE PATH
|
|
let realPath = path.join(storageRoot, masterAsset.path);
|
|
if (!fs.existsSync(realPath)) {
|
|
// Try fallback path (sometimes path already includes 'projects/' prefix, sometimes not relative to storage root in same way)
|
|
// If masterAsset.path starts with 'projects/', and storageRoot ends with 'storage', simple join usually works.
|
|
// Try stripping 'projects/' prefix if needed.
|
|
const altPath = path.join(storageRoot, masterAsset.path.replace(/^projects\//, ''));
|
|
if (fs.existsSync(altPath)) {
|
|
realPath = altPath;
|
|
} else {
|
|
// Try assuming it's relative to CWD if local debug
|
|
const localPath = path.resolve(process.cwd(), '../storage', masterAsset.path);
|
|
if (fs.existsSync(localPath)) realPath = localPath;
|
|
}
|
|
}
|
|
|
|
if (!fs.existsSync(realPath)) {
|
|
throw new Error(`Master asset file not found on disk at: ${realPath}`);
|
|
}
|
|
|
|
// PROCESS IMAGE
|
|
const rawBuffer = fs.readFileSync(realPath);
|
|
|
|
// Resize for AI Latency Optimization
|
|
const resizedBuffer = await sharp(rawBuffer)
|
|
.resize({ width: 1024, height: 1024, fit: 'inside' })
|
|
.toBuffer();
|
|
|
|
const base64Image = resizedBuffer.toString('base64');
|
|
|
|
console.log(`[AI-Reconstruction] Image processed (${rawBuffer.length} -> ${resizedBuffer.length} bytes). calling Gemini...`);
|
|
|
|
// CALL GEMINI
|
|
const parts: Part[] = [
|
|
{
|
|
text: `
|
|
You are a Professional Market Analyst and SEO Specialist.
|
|
Analyze this image (which is a digital product for Etsy) to reconstruct its lost metadata.
|
|
|
|
IMPORTANT:
|
|
- Keep "description" SHORT and CONCISE (max 50 words).
|
|
- Return exactly 13 "keywords".
|
|
- Do not hallucinate long text.
|
|
- "jsonLd" should be a valid schema.org Product or CreativeWork object.
|
|
|
|
Return ONLY a JSON object:
|
|
{
|
|
"niche": "specific niche string",
|
|
"productType": "Wall Art",
|
|
"title": "SEO Title",
|
|
"description": "Short Marketing Description",
|
|
"keywords": ["tag1", "tag2", "tag3", "tag4", "tag5", "tag6", "tag7", "tag8", "tag9", "tag10", "tag11", "tag12", "tag13"],
|
|
"creativity": "Balanced",
|
|
"jsonLd": { "@context": "https://schema.org", "@type": "Product", "name": "...", "description": "...", "image": "...", "brand": "..." }
|
|
}
|
|
` },
|
|
{ inlineData: { data: base64Image, mimeType: "image/png" } }
|
|
];
|
|
|
|
const result = await ai.models.generateContent({
|
|
model: "gemini-flash-latest", // 1.5 Flash (Confirmed Stable)
|
|
contents: { parts },
|
|
config: {
|
|
responseMimeType: "application/json",
|
|
responseSchema: {
|
|
type: Type.OBJECT,
|
|
properties: {
|
|
niche: { type: Type.STRING },
|
|
productType: { type: Type.STRING },
|
|
title: { type: Type.STRING },
|
|
description: { type: Type.STRING },
|
|
keywords: { type: Type.ARRAY, items: { type: Type.STRING } },
|
|
creativity: { type: Type.STRING },
|
|
jsonLd: {
|
|
type: Type.OBJECT,
|
|
properties: {
|
|
"@context": { type: Type.STRING },
|
|
"@type": { type: Type.STRING },
|
|
name: { type: Type.STRING },
|
|
description: { type: Type.STRING },
|
|
image: { type: Type.STRING },
|
|
brand: { type: Type.STRING }
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
});
|
|
|
|
let responseText = result.text;
|
|
if (!responseText) throw new Error("Empty AI Response");
|
|
|
|
// Clean JSON
|
|
responseText = responseText.replace(/```json/g, '').replace(/```/g, '').trim();
|
|
|
|
let metadata;
|
|
try {
|
|
metadata = JSON.parse(responseText);
|
|
} catch (e) {
|
|
console.error("JSON Parse Error:", responseText);
|
|
throw new Error("Failed to parse AI response JSON");
|
|
}
|
|
|
|
const finalTitle = metadata.title || `Recovered Project ${project.niche?.substring(0, 10) || 'Art'}`;
|
|
const finalDescription = metadata.description || "Project metadata recovered from image analysis.";
|
|
const finalKeywords = Array.isArray(metadata.keywords) ? metadata.keywords : ["Recovered"];
|
|
|
|
// UPDATE DB
|
|
// Update Project
|
|
await prisma.project.update({
|
|
where: { id: projectId },
|
|
data: {
|
|
niche: metadata.niche || "Recovered Art",
|
|
productType: metadata.productType || "Wall Art"
|
|
}
|
|
});
|
|
|
|
// Update SeoData
|
|
const updatedSeo = await prisma.seoData.upsert({
|
|
where: { projectId: projectId },
|
|
create: {
|
|
projectId: projectId,
|
|
title: finalTitle,
|
|
description: finalDescription,
|
|
keywords: JSON.stringify(finalKeywords),
|
|
jsonLd: JSON.stringify(metadata.jsonLd || {}),
|
|
printingGuide: "Standard",
|
|
suggestedPrice: "5.00"
|
|
},
|
|
update: {
|
|
title: finalTitle,
|
|
description: finalDescription,
|
|
keywords: JSON.stringify(finalKeywords),
|
|
jsonLd: JSON.stringify(metadata.jsonLd || {})
|
|
}
|
|
});
|
|
|
|
// Strategy Object Return for frontend
|
|
return {
|
|
seoTitle: finalTitle,
|
|
description: finalDescription,
|
|
keywords: finalKeywords,
|
|
printingGuide: "Standard",
|
|
suggestedPrice: "5.00",
|
|
jsonLd: metadata.jsonLd // return object, endpoint might stringify or not
|
|
};
|
|
}
|